EN

张昕亚  博士

复杂系统  人工智能  计算神经    网站:https://xinyacheung.github.io/

汤超实验室邮箱:zhangxinya@westlake.edu.cn

个人简介

张昕亚博士于2019年和2024年分别获得同济大学物理学学士和博士学位,博士期间在英国伦敦大学学院(University College London)脑科学系进行为期一年的访问研究,2025年1月加入西湖大学交叉科学中心开展博士后研究。她的研究范围包括复杂系统、人工智能和计算神经科学,以第一作者身份在物理学顶级期刊Physical Review Letters、Physical Review Research上发表论文,并在NeurIPS(Spotlight)、AAAI(Oral)等人工智能领域顶级国际会议上发表合作论文,研究成果获得了编辑特别推荐(Editors' Suggestion)和期刊专题(Featured in Physics)的荣誉,并获得第二十届全国复杂网络学术会议最佳学生论文等奖项。目前,她的研究重点是物理学与人工智能交叉领域的前沿探索。

代表论文

1. X.-Y. Zhang, J. M. Moore, X. Ru, G. Yan. Geometric scaling law in real neuronal networks. Physical Review Letters, 2024, 133 (13): 138401.

2. X.-Y. Zhang, H. Lin, Z. Deng, M. Siegel, E. K. Miller, G. Yan. Decoding region-level visual functions from invasive EEG data. bioRxiv, 2024.04. 02.587853

3. Z. Liu, X. Ru, J. M. Moore, X.-Y. Zhang, G. Yan. Mixup in latent geometry for graph classification. IEEE Transactions on Network Science and Engineering, 2024.

4. X.-Y. Zhang, S. Bobadilla-Suarez, X. Luo, M. Lemonari, S. L. Brincat, M. Siegel, E. K. Miller, B. C. Love. Adaptive stretching of representations across brain regions and deep learning model layers. bioRxiv, 2023.12. 01.569615

5. X. Ru, X.-Y. Zhang, Z. Liu, J. M. Moore, G. Yan. Attentive transfer entropy to exploit transient emergence of coupling effect. Advances in Neural Information Processing Systems (NeurIPS 2023).

6. X. Ru, J. M. Moore, X.-Y. Zhang, Y. Zeng, G. Yan. Inferring patient zero on temporal networks via graph neural networks. Proceedings of the AAAI Conference on Artificial Intelligence (AAAI 2023), 37 (8): 9632.

7. X.-Y. Zhang, J. Sun, G. Yan. Why temporal networks are more controllable: Link weight variation offers superiority. Physical Review Research, 2021, 3 (3): L032045.